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As a new example of spontaneous pattern formation in many-body systems, 
we examine the collective means by which a close-packed disk crystal reacts to 
the presence of a single oversized impurity disk. Computer simulation has been 
used for this purpose; it creates the jammed impurity-containing packings by a 
kinetic particle-growth algorithm. Hexagonal primitive cells with periodic 
boundary conditions were employed, and the "natural" number 3n 2 of disks 
(including the impurity) ranged up to 10,800. For impurity diameter 1.2 times 
that of the other disks, the patterns of observed crystal perturbation displayed 
several remarkable features. Particle displacements relative to the unperturbed 
triangular crystal possess local irregularity but long-range coherence. The sym- 
metry of the coherent patterns preserved that of the hexagonal cell for rapid 
growth, but was lower for slower growth. The final jammed packings contain 
"rattier" disks of the sort known to appear in random disk packings. Finally, 
the area increase induced by the presence of a fixed-size impurity appears to 
grow without bound as the system size (i.e., 3n 2) itself increases. 

KEY WORDS: Pattern selection; symmetry breaking; rigid disks; close 
packing; crystalline order; point defects; rattlers. 

1. I N T R O D U C T I O N  

It is well k n o w n  that  the denses t  a r r a n g e m e n t  of  ident ical  rigid disks in the 
plane is the t r i angu la r  lattice. 11"2~ All disks in this per iod ic  s t ruc ture  are  

equivalent ,  and con tac t  six neares t  ne ighbors .  An  e x p a n d e d  ( u n j a m m e d )  
vers ion of  this c lose -packed  a r ray  appea r s  in the classical  r igid-disk system 

under  t he rma l  equ i l i b r ium condi t ions :  it is the t w o - d i m e n s i o n a l  crystal  

s t ruc ture  tha t  s p o n t a n e o u s l y  arises when  c o m p r e s s i o n  of  the low-dens i ty  

fluid induces  a f i rs t -order  f reezing t ransi t ion.  ~3'4) The  case of  ident ical  r igid 
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spheres in three dimensions may be analogous, but is obscured by the 
structural multiplicity of regular close-packed arrays ~2~ and by the absence 
of a proof that the densest sphere packing is attained in a periodic 
structure. 

This paper examines the geometric disruption of a fully compressed 
(i.e., jammed) disk crystal produced by an ill-fitting impurity, specifically a 
single disk somewhat larger than the rest. In view of the simple interlocking 
of identical disks that is present in their own periodic close-packed 
array, it is not surprising to find (as we report below) that an impurity 
can produce very extended patterns of broken symmetry. However, the 
long-range coherence of the disruption patterns found to coexist with fine- 
grained local irregularity is a surprising discovery. The strain fields 
involved in the broken lattice symmetry arise spontaneously as the jammed 
structures are produced in our calculations, and their long-range coherence 
features appear to depend on the relative kinetic rate at which the final 
jammed packing (with embedded impurity) is formed. 

It should be emphasized at the outset that our impurity-disrupted 
crystal configurations arise under closed system conditions, that is, fixed 
numbers of particles as the jammed packing limit is approached. Our 
procedure thus corresponds roughly to nonequilibrium impurity trapping 
in real crystalline materials as a result of rapid quenching or compression. 
An alternate scenario would involve an open system with particle exchange 
to and from a reservoir at controlled chemical potential, and very slow 
approach to the jamming limit. This latter case would display automatic 
expulsion to the reservoir of one or more crystal particles from the 
immediate vicinity of the oversized impurity to accomodate its presence, 
without producing long-range coherent patterns of disruption. 

Examining the influence of an anomalous-size particle in a many- 
particle system is a well-established strategy in statistical physics. In par- 
ticular, it is central to the so-called "scaled particle theory" that has been 
applied both to rigid spheres t5'61 and to rigid disks. ~6-8~ Furthermore, 
binary mixtures have been examined both for spheres and for disks, with 
arbitrary size and concentration ratios, in several publications dealing with 
various statistical-geometric and condensed-matter phenomena. ~9-tz) We 
suspect that the present paper may help to deepen understanding in some 
of these areas. 

Section 2 outlines our computation procedure. Section 3 illustrates its 
application by considering a small system (27 disks) to establish a few basic 
concepts. Section4 presents our major results, involving symmetry- 
breaking strain patterns in 10,800-disk systems. Section 5 offers some con- 
cluding remarks. An appendix is also included to provide an upper-bound 
estimate of the overall system dilation generated by an oversized impurity. 



Pat te rns  of Broken Symmetry 1013 

2. C O M P U T A T I O N A L  PROCEDURE 

Periodic boundary conditions provide a natural setting for the present 
study, to eliminate the distracting influence of edge effects. Furthermore, it 
is desirable to maximize the distance between the perturbing impurity disk 
in the primary cell and its periodic images in surrounding cells for a given 
overall system size. This requirement suggests use of a primary cell that has 
the shape of a regular hexagon, so that it and its periodic images cover the 
entire plane as a honeycomb structure. When any disk crosses an edge of 
the primary hexagon into a neighboring image hexagon, a disk image 
simultaneously enters the primary hexagon across the opposite edge. 

With an integer number of particles equal to 3n 2 ( n =  1, 2 .... ), it is 
possible to arrange those particles in the primary hexagon so that their 
positions and corresponding images form a perfectly periodic infinite tri- 
angular array. If all particles were rigid disks with a common diameter a, 
this is the configuration that permits the largest a value without disk over- 
lap, thus attaining the maximal covering fraction of the plane: 

= ~/(2.3 t/2) = 0.906899... (2.1) 

Figure 1 illustrates this standard arrangement for n = 2. 
As in our earlier studies of random disk packings, (t3']4~ we generate 

dynamical trajectories for the disks, accounting for collisions, while all 

/ �9 . �9 ~ �9 �9 �9 ~ �9 ./ 

Fig. 1. Honeycomb lattice formed by the regular hexagonal primary cell and its periodic 
images. Shown as well are positions of 12 particles which, with their periodic replicas, form 
a triangular array. 
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disks grow in size at a uniform rate until a jammed (tightly packed) state 
is achieved. On account of the particle growth, energy is not conserved, but 
increases with each collision for the system as a whole. In order to assure 
(at least for large n) that the system dynamical evolution eventually traps 
the disks in an essentially crystalline (as opposed to amorphous) configura- 
tion, the following conditions have always been imposed: 

(a) The 3n 2 disks, including the oversized impurity disk, initially 
reside on a regular triangular lattice as illustrated in Fig. 1. Because all 
disks begin the simulation with scaled-down sizes, this configuration 
involves no overlap. 

(b) The impurity disk has been limited in size to no more than 
r = 1.4 times the diameter of the other disks. 

(c) The disks are not grown from point particles as in previous 
studies, ~3'14) but start with a substantial fraction of their final diameter. 
For given size ratio r the initial diameters are chosen so that the oversized 
impurity very nearly (but not quite) contacts its six neighbors. 

Every disk i is initially assigned a velocity with components vi.,. and v~,. 
uniformly distributed between fixed limits "{-I / )maxl  , SO that the mean 
velocity vanishes and the mean speed is unity. Also, the constant disk- 
diameter growth rate (scaled proportionately for the impurity) is specified. 
The ratio of initial diameter growth rate to initial disk translational speed 
influences the final patterns of crystal disturbance in a substantial way, as 
will be stressed below. 

The mean disk speed and collision rate tend to increase without limit 
as any given computation proceeds toward jammingJ 14) To counteract this 
phenomenon without significantly influencing the final outcome, disk 
velocities have been repeatedly scaled downward in the late stages of the 
computation. Any case is regarded as numerically completed when the 
covering fraction ~ has stabilized to at least ten significant figures. 

3. S M A L L - S Y S T E M  A P P L I C A T I O N S  

Under the boundary conditions discussed in Section 2, the smallest 
possible system size (n = 1) involves three disks, one of which is larger than 
the other two. Provided that the diameter ratio r lies in the range 

1<r<(2.3 1/2-1)1=6.4641... (3.1) 

this simple periodic system has only a single jammed structure. It is 
illustrated in Fig. 2. The large "impurity" disk and its images present a 
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Fig. 2. Unique packing for the periodically replicated three-disk system, provided the size 
ratio r satisfies Eq. (3.1). 

I dtsks ha~e 0 contacts 0 disks have I contact~ 
0 di~ks h:t~c 2 contzcts 6 disks have 3 contacts 
I~ disks ha~e 4 c~lntacts 4 disks have 5 conlacts 
I disk~ ha~e • ctlnt3r 

Fig. 3. Twenty-seven disk packing, with central impurity disk 1.2 times the size of the others. 
Periodic boundary conditions apply across the edges of the hexagonal primitive cell. The 
number of contacts experienced by particles, defined by Eq. (3.4), is indicated at the center of 
each disk. 
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-' d l , k ,  h.t~ ~' l)  +o l l t a ,  t~ I) d i s k s  h a v e  I c o n t a c t s  
~) d l , k ,  haxc  2 UOnlaCt, I I d isks have  3 contac t~  
�9 d l - k ,  l l ano  4 ~'*qu.l, : ,  5 d i~ks  h a v e  5 c o n l a c t ~  
I ,Jl~k, h;~xc t~ s 

Fig. 4. Alternative disk packing for 27 disks, one of which is an oversized impurity (at 
center). Conditions are the same as for the packing shown in Fig. 3, except that the initial 
mean particle speed has been increased by 107 . 

triangular array throughout the plane, while the smaller disks act as 
"spacers." Each large disk experiences six contacts with smaller disks; 
smaller disks contact three large disks, but none of their own size. While 
r remains in the range specified by Eq. (3.1), the covering fraction is 

2zc(2 + r 2) (3.2) 
- 33/2(1 + r) 2 

Increasing the number of disks in the primary hexagonal cell leads 
to rather more complicated behavior. For given r, a multiplicity of dis- 
tinguishable jammed packings appears, the majority of which apparently 
have symmetry lower than that of Fig. 2. Figures 3 and 4 illustrate this 
situation for the 27-disk case ( n = 3 )  and size ratio r =  1.2, presenting 
obviously distinct packings. The preparation procedures for these two 
examples differed only in the initial mean translation speed of the disks 
compared to their diameter growth rate: 10 -8 for Fig. 3, 10 -1 for Fig. 4. 
The final covered fractions are close, but clearly distinguishable: 

-- 0.867200086... (Fig. 3) 

-- 0.866545725... (Fig. 4) (3.3) 
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The disks depicted in Figs. 3 and 4 have been identified by the number 
of neighbor contacts they experience. Numerically, the contact criterion for 
any disk pair (i , j)  is taken to be 

[ d ( i , j ) -  c( i , j )] /c( i , j )  <. 10 -8 (3.4) 

where d(Lj)  is the distance between the disks (or their images), and c(i,j)  
is the corresponding collision diameter (which has only two possible 
values, 1 and 1.1). In both of the cases shown in Fig. 3 and4  the large 
impurity disk touches six neighbors; all other disks experience fewer con- 
tacts. A necessary criterion for the system to be in a jammed state is that 
connected pathways consisting of contacting particles must exist across the 
primary cell between opposite boundaries, and furthermore all particles 
along the pathways must have three or more contacts. Examination of 
Figs. 3 and 4 verifies that the disk arrangements shown satisfy this criterion. 

It is important to note that both of these 27-disk jammed packings 
contain "rattlers," i.e., disks with no contacts. In previous studies of the 
packings of identical disks, rattlers were found to be a characteristic feature 
of amorphous structuresJ ~3"~4~ Evidently the forced inclusion of a single 
oversize impurity disk constitutes a powerful local disruptive influence. 

Our survey of the 27-disk system has produced other packings for 
r =  1.2 beyond those illustrated in Fig. 3 and 4. It has also yielded 
analogous packings for r =  1.1 and 1.3. All cases examined exhibited at 
least one small "rattler" disk. 

4. L A R G E - S Y S T E M  A P P L I C A T I O N  

We now pass on to consider a much larger system, containing 10,800 
disks (n = 60). As before, just one of these will be distinguished by an 
anomalously large diameter, but its perturbing influence can now spread 
over a considerably larger area. 

One measure of the structural disruption produced by an ill-fitting 
large disk is the area increase AA displayed by the system compared to its 
unperturbed value ( r=  1, all disks identical). The appendix derives an 
upper bound for this quantity; this bound diverges linearly with n for any 
r >  1. For the cases to be examined in this section, involving an impurity 
with size ratio-r = 1.2 in the 10,800-particle system, the bound is 

AA~41.OO2216a 2 (4.1) 

where as before a is the final nonimpurity disk diameter. This result is 
based on the outward displacement of triangular disk sectors surrounding 
the impurity, which maintain their internal contacts. However, the 
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large-system packings to be discussed actually make much better use of 
the available space: cooperative disk rearrangements permit substantial 
reduction in zlA below the estimate in (4.1). 

We now examine the results of four (apparently) representative 
simulation runs. Their key characteristics are presented in Table I; these 
include the ratio of disk expansion rate to initial mean speed, and the 
final AA. 

Figures 5-8 present representations of the disk displacements occur- 
ring for each of the packings, between initial and final configurations. 
Recall that all disks begin the simulations in a shrunken state, located at 
the sites of the undistorted triangular lattice. Subsequent disk growth, colli- 
sions, and ultimate jamming lead to the final displaced locations. For each 
of the disks a line segment has been drawn, emanating from the initial posi- 
tion and in the displacement direction, but magnified in length by a factor 
of ten to facilitate visualization. 

The cases illustrated in Figs. 5 and 6 involve disk growth 104 times 
larger than the initial mean particle speed. For those illustrated in Fig. 7 
and 8 the corresponding ratio is much smaller, 10 -3 .  In all four cases 
shown the impurity disk with size ratio 1.2 is located at the center of the 
primary hexagonal cell. 

The large-scale displacement patterns are obviously quite different 
between the two pairs of cases. The rapid-disk-expansion packings in Fig. 5 
and 6 present displacement fields whose coarse-grained description, at 
least, is sixfold symmetric, radiating outward from the central impurity. 
Although these first two cases seem visually very similar at the size scale 
shown, in fact they are geometrically distinct, as the AA values listed in 
Table I verify. 

Table I. Characteristic Parameters for Four Simulations, wi th  10,800 Disks in 
a Hexagonal Primitive Cell and Periodic B o u n d a r y  C o n d i t i o n s  

Simulation number 1 2 3 4 
Figure number 5 6 7 8 
Expansion rate/ 104 104 10 -3 10 -3 

initial mean speed 
Impurity disk 1.2 1.2 1.2 1.2 

diameter/a 
zlA/a'- 21.85099 22.09071 20.39012 20.35364 

Final pattern type Six-fold rotation Six-fold rotation Two reflections One reflection 
+ reflections + reflections 

Number of rattlers 181 155 65 39 
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Fig. 5. Displacement pattern for a lO,800-disk packing surrounding an r = 1.2 oversized 
impurity at the center. An expansion factor of ten has been applied to each displacement line 
to enhance visibility. This is a rapid-disk-growth case (see Table I). 

The  c o n t r a s t i n g  s l o w - d i s k - e x p a n s i o n  cond i t i ons  e m p l o y e d  for Fig.  7 
and  8 o b v i o u s l y  yield lower  c o a r s e - g r a i n e d  symmet ry .  F i g u r e  7 d i sp lays  a 
pa i r  of  p e r p e n d i c u l a r  ref lect ion lines pass ing  t h r o u g h  the cen t ra l  i m p u r i t y  
disk,  one  pass ing  t h r o u g h  o p p o s i t e  ver t ices  of  the p r imi t ive  hexagon ,  the 
o the r  b isec t ing  two  of  its sides. F i g u r e  8 has  still lower  c o a r s e - g r a i n e d  

:: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
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Fig. 6. Displacement pattern for another lO,800-disk packing created under rapid-disk- 
growth conditions and impurity size ratio r = 1.2 (see Table I). 

8 2 2 / 7 8 / 3 - 4 - 2 3  
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Fig. 7. Displacement pattern for a packing of 10,800 disks created under slow-disk-growth 
conditions and r = 1.2 (see Table I). 

symmetry, with only a single side-bisecting reflection line. Once again the 
packings are distinguishable by their AA values listed in Table I. 

It seems quite plausible by hindsight that the relative speeds of disk 
growth rate and of initial translational motion should influence the final 
packing patterns. If the growth rate is very large as in Fig. 5 and 6, the 
system becomes jammed before it has a chance to escape the sixfold local 

. S = X , , : < < k . Y + Y "  : ~. . " "- , ' ,~ji i"  ::~'jy,i,;%',y,!ili,:~; ':~!~:::~:~ " ' ~ / . k  �9 . . . . . . . . . .  : k ~ 

�9 

< 

= : . ' : . - : � 9  : : : . � 9  v ~ 

�9 : = , : X +  �9 �9 �9 � 9  X +  � 9  

Fig. 8. Displacement pattern for another packing of 10,800 disks with a central r =  1.2 
impurity, produced with slow-disk-growth conditions. 
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Fig. 9. Arrangement of disks in the central region of the packing depicted in Fig. 8. Particles 
have been classified by number of contacts according to shading: "rattlers" are white, and 
increasing darkness indicates more contacts. 

symmetry of the initial triangular lattice configuration. But if translational 
speed dominates disk growth (Figs. 7 and 8), the system has an oppor- 
tunity to explore available configuration space more fully and to discover 
geometrically more efficient packings of lower symmetry before jamming 
sets in. Indeed the A,4 values and the numbers of rattlers listed in Table I 
are significantly smaller for the slow-disk-expansion conditions than for the 
rapid-disk-expansion conditions. 

Careful examination of the packings produced reveals that patterns of 
coarse-grained (i.e., large-scale) symmetry have been imposed over fine- 
grained irregularity. Figure 9 illustrates this feature, showing an expanded 
view of the disks near the central region of the packing of Fig. 8. Notice in 
particular the asymmetric distribution of the six rattler particles without 
contacts (unshaded disks), violating the symmetry of a vertical reflection 
line. This reflection symmetry is also violated by the small-amplitude zigzag 
pattern of vert'ical displacements along the horizontal disk row passing 
through the central impurity. Our large-system calculations show that 
rattlers tend to concentrate near the oversize impurity and along grain 
boundaries. 
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5. D I S C U S S I O N  

The spontaneous appearance of large-scale strain patterns in our 
impurity-perturbed many-disk system has a wide range of analogs. These 
include both solid- and liquid- phase phenomena whose late-stage macro- 
scopic patterns can depend sensitively on the initial microscopic state. 
Specific examples are polycrystalline grain and eutectic patterns produced 
by melt solidifcation; nonequilibrium fluid phenomena include oscillatory 
chemical reactions, convective roll patterns, and turbulence. ~LS~ However, 
none of these share the fundamentally geometric nature of the present case 
that arises from particle nonoverlap. 

The examples we have been able to carry to completion have admit- 
tedly been few. For that reason we must be cautious about drawing conclu- 
sions. However, the four cases examined with 10,800 disks in Section 4 do 
suggest that the final large-scale displacement pattern tends to have lower 
symmetry when initial mean particle speed is large compared to particle 
growth rate, rather than the reverse. We do not suggest that final symmetry 
changes discontinuously as this kinetic ratio varies; we presume it is a 
smooth statistical change, the extreme limits of which are represented by 
the four cases in Section 4. 

We have carried out some limited numerical exploration with disk size 
ratios differing from 1.2. If the ratio is less than 1.3, the large-scale patterns 
produced appear to conform to the trend discussed in Section 4. Larger r 
can lead to coherent but dissymmetric patterns; Fig. 10 supplies an example 
with r =  1.4 and slow disk expansion compared to initial translational 
speed. Although these computations involving o v e r  10 4 particles are rather 
demanding, it is desirable to extend the study beyond its present limits. 

Fig. I0. Displacement pattern for 10,800 disks, with central r = 1.4 impurity, and slow-disk 
expansion. 
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Such extensions would include nonhexagonal primitive cells; we have 
carried out preliminary study of 10,864 disks in a square cell, where an 
oversize impurity also produces coherent large-scale patterns. It would also 
be illuminating to investigate the three-dimensional case of the close- 
packed sphere crystal analogously perturbed by an oversize impurity 
particle. 

The A A  upper bound derived in the appendix, Eq. (A.6), is a linear 
function ofn. While entries in Table I show the disk rearrangement com- 
pared to the configuration used to derive this bound reduces A A  roughly 
by a factor of 2, it seems hard to escape the conclusion that the least upper 
bound for disks with r >  1 remains a linear function ofn. Verification of 
this assumption and improvement of bound (A.6) remain substantial math- 
ematical challenges, as does the extension to three dimensions. 

A P P E N D I X  

When r = 1 the "impurity" disk is identical to all others, and the entire 
collection of 3n 2 disks can be arranged into a structurally perfect triangular 
lattice. For simplicity let the common diameter a be unity. The hexagonal 
cell containing this close-packed arrangement and surrounded by its 
periodic images will have area 

A = 33/2n2/2 (A.1) 

If l represents the distance between the center of the primitive hexagon and 
the midpoint of one of its sides, then regardless of the state of disk packing 
we always have the relation 

A = 2.3U2l 2 (A.2) 

so that in the close-packed state 

l = 31/2n/2 (A.3) 

Now let r increase above 1 while holding the common diameter a of 
the nonimpurity disks at the previous value 1. The objective is to describe 
a concerted particle rearrangement that accommodates the impurity 
growth while avoiding disk overlaps within the primitive hexagon and with 
image disks. Figure 11 illustrates the scheme to be used. The unit-sized 
disks are collected into six "tectonic plates" that drift outward from, but 
maintain contact with, the growing impurity at the center (not shown in 
Fig. 11 for simplicity). This outward drift requires that the hexagonal 
primitive cell expand by a corresponding amount. The direction of drift for 
each of the six plates is perpendicular to a side of the hexagon, and so the 
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j 

i 
Fig. 11. Tectonic plate motion required to accommodate an expanded impurity disk, not 
shown, but centered at the vacancy position. 

required perfect contact is maintained between disks at the outer edges of 
those plates and image disks from expanding neighbor hexagonal cells. At 
the same time, of course, gaps open up between pairs of plates in the 
primitive hexagon, radiating outward from the central impurity position. 

Figure 12 indicates in greater geometric detail how expansion of the 
central impurity requires outward plate drift, and thus an equal increase in 
the distance/. One immediately finds that 

l(r) = 3 ~12(n - 1 )/2 + y(r) (A.4) 

where y(r) is the unit disk altitude above the impurity center as shown in 
Fig. 12, 

1 2 y ( r ) =  _~(r +2r )  1/2 (A.5) 

From Eq. (A.2) we can calculate the increase dA in system area produced 
by the impurity: 

AA=3312{I(r232'______~')i/2_l]n l[-[r2+2r~ u2 (A.6) 

This provides an upper bound estimate for dd with which the simulation 
results of the body of the paper can be compared. For general a, expres- 
sion (A.6) is to be multiplied by a 2. 



Patterns of  Broken Symmetry 1025 

Fig. 12. Geometric constraints determining the magnitude of outward plate motion required 
by an expanded impurity disk. The y axis is the drift direction for the plate whose inner vertex 
is the unit disk shown. 

A conceivable alternative to the radial plate tectonics just analyzed 
would be the expulsion of the requisite number of unit-size disks to the 
outer boundary of the primary cell so as to create a multivacancy large 
enough to hold the oversize impurity. This alternative would maintain the 
structural integrity throughout most of the close-packed crystal. But since 
the expelled disks would have to initiate a new row at the boundary of the 
primary hexagon, / would have to increase by 1/2. Consequently the corre- 
sponding area increase would be 

zlA = 3n + 3 l/e/2 (A.7) 

regardless of how little r might exceed unity. This is a considerably poorer 
upper bound for our simulation circumstances than is the expression 
appearing in Eq. (A.6). 
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